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A Rubik’s cube contains 6 faces, each of a distinct color. These six colors are blue, green,

orange, red, white, and yellow. Each face of the cube can be rotated by increments of 90

degrees. Here’s a visualization of the Cube, with the center square being the unseen face in

the back:

Let S = {B,G,O,R,W, Y } be the set of single clockwise rotations for a Rubik’s Cube,

where the letter of each element corresponds with the color of the center cubie (an individual

cube within the whole Rubik’s Cube), which stays fixed. For example, B is the action of

rotating the face with blue as its center cubie.
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1 Some Definitions and Proofs

Definition 1.1. A set H is a subgroup of a group G, denoted H ≤ G, if and only if

(1) H ⊆ G,

(2) H 6= ∅, and
(3) for any a, b ∈ H, ab-1 ∈ H.

Proposition 1.1. Let H = {g1, g2, g3, ..., gn} where g1, g2, g3, ..., gn ∈ G. Therefore, H ≤ G.

Proof. By Definition 1.1, H ≤ G if and only if H satisfies three conditions.

(1) H is clearly a subset of G since all elements in H are also in G.

(2) H is clearly nonempty since it contains, for example, g1.

(3) Take a, b ∈ H. Since H 6= ∅, a-1, b-1 ∈ H. So aa-1 ∈ H. So the identity of G, aa-1 = e, is

an element of H. Thus, ab-1 ∈ H.

So by (1), (2), (3), and by Definition 1.1, H ≤ G.

Definition 1.2. Let a and b be elements of a group H. H is called abelian if and only if

the group operation is commutative such that ab = ba.

Example 1.1. Consider a Rubik’s Cube. Let the set S = {B,G,O,R,W, Y } be the group

consisting of 90 degree rotations where each element corresponds with the color of the center

cubie of any given face. The group S is not abelian.

Proof. Suppose that before any rotation is applied to a Rubik’s Cube, each face of the cube

can be expressed as a matrix whose elements are denoted by their color.

Blue Face:


b b b

b b b

b b b

 Green Face:


g g g

g g g

g g g

Orange Face:


o o o

o o o

o o o



Red Face:


r r r

r r r

r r r

 White Face:


w w w

w w w

w w w

Yellow Face:


y y y

y y y

y y y


First, consider the operation WY . The matrix of the face with the yellow center cubie is

transformed into


g g g

y y y

y y y

. Next, consider the operation YW . The matrix of the face with
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the yellow center cubie is transformed into


g y y

g y y

w y y

. Thus WY 6= YW . By Definition

1.2, S cannot be abelian.

Definition 1.3. Consider a group G. If M1,M2 ∈ G, then M1M2M
-1
1 M

-1
2 is the commu-

tator of G. The commutator M1M2M
-1
1 M

-1
2 is abbreviated as [M1,M2]. Also, if M1M2 =

M2M1, it is said that M1 and M2 commute.

Proposition 1.2. If M1,M2 ∈ G, then [M1,M2] = e if and only if M1 and M2 commute.

Proof. This proof requires two steps.

(1) First, let’s prove that if [M1,M2] = e, then M1 and M2 commute. Let’s assume that

[M1,M2] = e. So,

M1M2M
-1
1 M

-1
2 = e (By Definition 1.3)

⇒M1M2M
-1
1 M

-1
2 M2 = eM2

⇒M1M2M
-1
1 e = M2

⇒M1M2M
-1
1 = M2

⇒M1M2M
-1
1 M1 = M2M1

⇒M1M2e = M2M1

⇒M1M2 = M2M1.

So by Definition 1.3, M1 and M2 commute.

(2) Next, let’s prove that if M1 and M2 commute, then [M1,M2] = e. Let’s assume that M1

and M2 commute such that

M1M2 = M2M1 (By Definition 1.3)

⇒M1M2M
-1
1 = M2M1M

-1
1

⇒M1M2M
-1
1 = M2e

⇒M1M2M
-1
1 = M2

⇒M1M2M
-1
1 M

-1
2 = M2M

-1
2

⇒M1M2M
-1
1 M

-1
2 = e

⇒ [M1,M2] = e. (By Definition 1.3)

So by (1) and (2), [M1,M2] = e if and only if M1 and M2 commute.
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Definition 1.4. Let H and G be groups where h ∈ H and ρ : H → G. The function ρ is

called a homomorphism if and only if ρ(xy) = ρ(x)ρ(y).

Definition 1.5. Let g be an element of a group G, and let f : G → G be given by f(x) =

g-1xg. Then f is called conjugation by g.

Proposition 1.3. Let g be an element of a group G, and let f : G → G be given by

f(x) = g-1xg. Conjugation by g is a homomorphism.

Proof. Let x, y ∈ G. By Definition 1.4, conjugation by g is a homomorphism if and only if

f(xy) = f(x)f(y). Note that

f(xy) = g-1(xy)g (By Definition 1.5)

= g-1xyg

= (g-1x)(yg)

= (g-1x)e(yg)

= (g-1x)(gg-1)(yg)

= g-1xgg-1yg

= (g-1xg)(g-1yg)

= f(x)f(y). (By Definition 1.5)

So conjugation by g is clearly a homomorphism.
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2 GAP and defining the Rubik’s Cube

The Rubik’s Cube group can be expressed as a permutation, namely as an element of the set

of all permutations of {1,2,3,...,48} (i.e. S48). To define the Rubik’s Cube as a permutation,

refer to the figure below.
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Y
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Figure 1 can be expressed as a permutation group, given a few observations. When

the action R is performed, the edge cubies on the red face is a cycle where (13, 14, 15, 16)

is the said cycle. However, since the edges are each ”‘connected”’ to an edge of each of

the four adjacent faces, we also have the cycle (39, 24, 45, 6). Similarly, the corner cubies

need to be accounted for the red face; this means that along with the cycle (9, 10, 11, 12),

there is also (36, 17, 42, 3) and (35, 20, 41, 2). Thus, the action of rotating the red face is

R = (13, 14, 15, 16)(39, 24, 45, 6)(9, 10, 11, 12)(36, 17, 42, 3)(35, 20, 41, 2). This logic can be

applied to the other five faces where O,B,W, Y,G are products of five cycles of length 4.

Definition 2.1. An even permutation is a permutation that can be written as a product

of an even number of transpositions (i.e. cycles of length 2). Similarly, an odd permutation

is a product of an odd number of transpositions.

Proposition 2.1. Each face rotation Rot ∈ S is an odd permutation. However, not all

permutations in the Rubik’s Cube group is odd.

Proof. Note that

Rot = (abcd)(efgh)(ijkl)(mnop)(qrst),

where a,b,c, ..., t are labels for a face of a cubie. Note that R can alternatively be written as

Rot = (bda)(bc)(fhe)(fg)(jli)(jk)(npm)(no)(rtq)(rs)

= (ad)(ba)(bc)(eh)(fe)(fg)(il)(ji)(jk)(mp)(nm)(no)(qt)(rq)(rs).
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Now we know that Rot is a product of 15 transpositions. Thus, all face rotations alone are

odd permutations.

Proposition 2.2. The order of the Rubik’s Cube group is 227314537211.

Proof. Let’s first have the presumption that all orientations of the Rubik’s Cube are possible.

This means that we have two things to consider: cubie position and cubie orientation. For

both, it is necessary to split both of them into the corners and edges of the cube. The

following is shown through sheer observation:

(1) Consider corner cubie position. Since there is a finite quantity of spots at which

corner cubies can be placed, there are 8 possible positions.

(2) Consider corner cubie orientation. For any given spot that a corner cubie is placed,

the cubie has 3 possible orientations.

(3) Consider edge cubie position. Since there is a finite quantity of spots at which edge

cubies can be placed, there are 12 possible positions.

(4) Consider edge cubie orientation. For any given spot that an edge cubie is placed, it

has 2 possible orientations.

Now, given that the Rubik’s Cube group is a permutation group and thus all orientations

and positions can be expressed in factorial form, it appears that the order of the Rubik’s

Cube group is 8!12!38212. Later we shall restrict this number by a factor of 12, which gives

us 227314537211.

Now, GAP shall be finally implemented. Upon start-up, the program will show gap> at

the bottom line of text. Immediately following to the right of gap> should be typed as such:

R := (13, 14, 15, 16)∗(39, 24, 45, 6)∗(9, 10, 11, 12)∗(36, 17, 42, 3)∗(35, 20, 41, 2); ;

The colon equals (:=) sets the item on the left of the equality to be the item on the

right. This is useful when long permutations like R are implemented more than once. The

double semicolon (;;) does two things. The semicolon on the left solves for the input so that

the program knows it should not expect additional code. The second semicolon suppresses

the output of the input (this is often optional, especially when looking at the output is

unnecessary). After repeating the process for the other five faces, a new command is used.

The command “Group” generates a group comprised of one or more given elements. Call

this group “Cube”. Specifically,

Cube := Group([G,R,B,O,W, Y ]);
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Now that it appears that the Rubik’s Cube group has been created, let’s check that the

order of “Cube” is the expected value of 227314537211. Using the commands “FactorsInt”

and “Order”, the prime factorization of the order can be found. The following statement

solves for the prime factorization of the order of “Cube”:

FactorsInt(Order(Cube));

Note that the command “FactorsInt” does not give numbers like 53, but rather the

collection of prime numbers involved in the product that gives the order of the Rubik’s

Cube.

Proposition 2.3. Although each single face rotation is an odd permutation, not all permu-

tations in the Rubik’s Cube group are odd. That is, there exists some composition of single

face rotations that is an even permutation.

Proof. Consider G2 = G ◦G. Note that from Figure 1, we have

G = (1, 2, 3, 4)(5, 6, 7, 8)(9, 41, 27, 33)(12, 44, 26, 36)(16, 48, 30, 40).

Using GAP, we find G2 (G∗G in GAP) to be

(1, 3)(2, 4)(5, 7)(6, 8)(9, 27)(12, 26)(16, 30)(33, 41)(36, 44)(40, 48),

which is clearly an even permutation.

Composition does not usually commute. As a precaution, it is worth noting that GAP

performs composition from left to right although the result in this example would be identical

to composition performed from right to left. For example, B ◦O and O ◦B are permutations

that can easily be calculated on GAP. The results show that B ◦O 6= O ◦B
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W

Y

G BR O

x1 x2

x3x4

x2 + 2 x5 + 1

x8 + 2x3 + 1

x5 x6

x7x8

x5 + 2x2 + 1

x3 + 2 x8 + 1

x6 + 2 x1 + 1

x4 + 2x7 + 1

x7 + 2x4 + 1

x1 + 2 x6 + 1

For each single face rotation, we have that (x1, x2, x3, x4, x5, x6, x7, x8) changes to:

R : (x1, x3 + 2, x8 + 1, x4, x2 + 1, x6, x7, x5 + 2)

B : (x1, x2, x3, x4, x8, x5, x6, x7)

Y : (x1, x2, x4 + 2, x7 + 1, x5, x6, x8 + 2, x3 + 1)

G : (x4, x1, x2, x3, x5, x6, x7, x8)

W : (x2 + 2, x5 + 1, x3, x4, x6 + 2, x1 + 1, x7, x8)

O : (x6 + 1, x2, x3, x1 + 2, x5, x7 + 2, x4 + 1, x8)

Clearly (
∑8

i=1 xi) mod 3 = (
∑8

i=1 xi + 0) mod 3. For each change in the xi’s as shown

above, the sums are all equal to (
∑8

i=1 xi) mod 3. Since the sums (
∑8

i=1 xi + 1) mod 3 and

(
∑8

i=1 xi+2) mod 3 do not appear, we can say that only one third of the possible orientations

for the corner cubies is possible. Thus we can change our upper bound for the order of the

group from 8!12!38212 to 8!12!38212

3
.
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W

Y

G BR O

y1

y2

y3

y4

y6 + 1

y12 + 1

y8 + 1

y2 + 1

y9

y10

y11

y12

y5 + 1

y4 + 1

y7 + 1

y10 + 1

y5

y9 + 1

y6

y1 + 1

y8

y11 + 1

y7

y3 + 1

For each single face rotation, we have that (y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12) changes

to:

R : (y1, y8, y3, y4, y5, y2, y7, y12, y9, y10, y11, y6)

B : (y1, y2, y3, y4, y5, y6, y7, y8, y12, y9, y10, y11)

Y : (y1, y2, y7 + 1, y4, y5, y6, y11 + 1, y3 + 1, y9, y10, y8 + 1, y12)

G : (y4, y1, y2, y3, y5, y6, y7, y8, y9, y10, y11, y12)

W : (y6 + 1, y2, y3, y4, y1 + 1, y9 + 1, y7, y8, y5 + 1, y10, y11, y12)

O : (y1, y2, y3, y5, y10, y6, y4, y8, y9, y7, y11, y12)

Clearly (
∑12

i=1 yi) mod 2 = (
∑12

i=1 yi + 0) mod 2. For each change in the yi’s as shown above,

the sums are all equal to (
∑12

i=1 yi) mod 2. Since the sum (
∑12

i=1 yi + 1) mod 2 does not

appear, we can say that half of the possible orientations for the corner cubies are actually

possible. Thus we can change our upper bound for the order of the group from 8!12!38212

3
to

8!12!38212

6
.
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Earlier, it had been shown that each face rotation and its effects on the cubies regardless

of orientation was an even permutation. Since the only other kind of permutation is an odd

permutation, we can restrict half of all possible moves for the group. Thus we can change

our upper bound for the order of the group from 8!12!38212

6
to 8!12!38212

12
. Simplifying the latter

number into its prime factorization, we get 227314537211.
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